Counting Locally Symmetric Manifolds
نویسنده
چکیده
We give quantitive estimates for the number of locally symmetric spaces of a given type with bounded volume. Explicitly, let S be a symmetric space of non-compact type without Euclidean de Rham factors. Then, after rescaling appropriately the Riemannian metric, the following hold. Theorem A If rank(S) = 1 and S ≇ H2,H3, then there are at most V V Riemannian manifolds, locally isometric to S, with total volume ≤ V . Theorem B If rank(S) > 1 and S ≇ H2 × H2, then there are at most V V regular Riemannian manifolds, locally isometric to S, with volume ≤ V . Theorem C If S = (H2)a × (H3)b where (a, b) 6= (1, 0), (0, 1), (2, 0), then V V bounds the number of all irreducible S-manifolds with volume ≤ V .
منابع مشابه
Totally umbilical radical transversal lightlike hypersurfaces of Kähler-Norden manifolds of constant totally real sectional curvatures
In this paper we study curvature properties of semi - symmetric type of totally umbilical radical transversal lightlike hypersurfaces $(M,g)$ and $(M,widetilde g)$ of a K"ahler-Norden manifold $(overline M,overline J,overline g,overline { widetilde g})$ of constant totally real sectional curvatures $overline nu$ and $overline {widetilde nu}$ ($g$ and $widetilde g$ are the induced metrics on $M$...
متن کاملCommutative curvature operators over four-dimensional generalized symmetric spaces
Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.
متن کاملOn a class of paracontact Riemannian manifold
We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.
متن کاملWeyl’s Law in the Theory of Automorphic Forms
For a compact Riemannian manifold, Weyl’s law describes the asymptotic behavior of the counting function of the eigenvalues of the associated Laplace operator. In this paper we discuss Weyl’s law in the context of automorphic forms. The underlying manifolds are locally symmetric spaces of finite volume. In the non-compact case Weyl’s law is closely related to the problem of existence of cusp fo...
متن کاملOn Lorentzian two-Symmetric Manifolds of Dimension-four
‎We study curvature properties of four-dimensional Lorentzian manifolds with two-symmetry property‎. ‎We then consider Einstein-like metrics‎, ‎Ricci solitons and homogeneity over these spaces‎‎.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008